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Abstract
Background: Diabetes affects millions worldwide. Primary care physicians provide a significant portion of care, and they
often struggle with selecting appropriate medications.
Objective: This study aimed to develop a model that accurately predicts what drug an endocrinologist would prescribe based
on the current measurements. The goal was to create a system that would assist nonspecialists in choosing medications, thereby
potentially improving diabetes treatment outcomes. Based on the performance of previous studies, we set a performance target
of achieving a receiver operating characteristic area under the curve (ROC-AUC) above 0.95.
Methods: A transformer-based encoder-decoder model predicts whether 44 types of diabetes drugs will be prescribed. The
model uses sequences of age, sex, history for 12 laboratory tests, and prescribed drug history as inputs. We assessed the model
using the electronic health records from 7034 patients with diabetes seeing endocrinologists between 2012 and 2022 at the
University of Tokyo Hospital. We assessed model performance trained on data subsets spanning different time periods (2,
5, and 10 years) using micro- and macro-averaged ROC-AUC on a hold-out test set comprising data solely from 2022. The
model’s performance was compared against LightGBM.
Results: The model trained on data from the past 5 years (2017‐2021) yielded the best predictive performance, achieving a
microaverage (95% CI) ROC-AUC of 0.993 (0.992-0.994) and a macroaverage (95% CI) ROC-AUC of 0.988 (0.980-0.993).
The model achieved an ROC-AUC above 0.95 for 43 out of 44 drugs. These results surpassed the predefined performance
target and outperformed both previous studies and the LightGBM model’s microaverage ROC-AUC of 0.988 (0.985-0.990)
in terms of prediction accuracy. Furthermore, training the model with short-term data from the past 5 years yielded high
accuracy compared to using data from the past 10 years, suggesting that learning from more recent prescribing patterns might
be advantageous.
Conclusions: The proposed model demonstrates the feasibility of accurately predicting the next prescribed drugs. This model,
trained from the past prescriptions of endocrinologists, has the potential to provide information that can assist nonspecialists
in making diabetes-treatment decisions. Future studies will focus on incorporating important factors such as prescription
contraindications and constraints to enhance safety, as well as leveraging large-scale clinical data across multiple hospitals to
improve the generalizability of the model.
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Introduction
Diabetes affects 529 million people worldwide, with 1 in
every 10 adults experiencing the condition [1]. Patients
with diabetes receive care from primary care physicians, not
endocrinologists, in many areas including the United States,
Europe [2], and Japan [3]. This is particularly concerning
in the United States, where the endocrinologist shortage is
significant: the population-to-endocrinologist ratio within 20
miles was 29,887:1 for adults aged 18‐64. Rural areas face
even greater disparities, with only 55.5% of adults having
access to at least 1 endocrinologist within that distance [4].
Japan also faces a similar problem. Japan has 11 million
patients with diabetes but only about 7000 specialists, and
two-thirds of people with type 2 diabetes (T2D) receive
care from primary care physicians [3]. These nonspecial-
ists may struggle to predict a patient’s glycemic control.
Approximately 60% of surveyed patients with T2D treated by
nonspecialists experienced poor glycemic control (hemoglo-
bin A1c [HbA1c] ≥8%), with around 30% seeing worsened
levels the following year, according to a survey on T2D
treatment practices by primary care physicians [3].

One of the difficulties in diabetes treatment for pri-
mary care physicians is drug selection [5,6]. Medications
are prescribed either as monotherapy or in combination.
Medications need to be chosen [7] considering insulin
secretion and insulin resistance [8], age [9,10], degree of
obesity [11], severity of chronic complications [12], liver
function, and kidney function [13]. New diabetes treat-
ments continue to be developed, expanding the options for
medication selection. For example, in Japan, sodium–glucose
cotransporter 2 [14], imeglimin [15], and tirzepatide [16]
were introduced in 2014, 2021, and 2023, respectively.
The selection of diabetes medications depends on individual
patient factors, with guidelines [17] and treatment tendencies
[18] that vary from country to country. A tool supporting
drug selection could enhance treatment outcomes. It could
provide early warning to physicians and potentially improve
treatment outcomes for patients who are being examined by
nonspecialized physicians.

Clinical decision support systems (CDSS) provide
physicians with safety tools for drug selection [19]. By
adopting a knowledge-based approach aligned with clinical
guidelines, CDSS help to prevent medication errors such as
overdosing, incomplete, or unclear orders [20,21]. However,
replicating the ability of endocrinologists to select drugs
for individual patient conditions in a CDSS is complex and
challenging for knowledge-based approaches.

Machine learning (ML) has demonstrated success in
predicting patient symptoms, including forecasting the onset
of T2D [22] and predicting complications [23]. Several
studies have applied ML to the problem of drug selection
for patients with diabetes [24]. A study predicting the next
prescribed diabetes drugs for 161,497 patients with diabetes
using sequential pattern mining demonstrated an accuracy of
89.1%‐90.5% in guessing from 37 drug classes (eg, DPP-4
inhibitor) and 63.5%‐64.9% accuracy in guessing from 43

drugs (eg, algliptin) [25]. Another study predicted 7 drug
classes with an ROC-AUC of 90.6%‐94.3% using recur-
rent neural networks (RNN) [26]. There are also proposed
methods for predicting treatment outcomes after selecting
diabetes medications [27].

The field of ML has undergone significant advance-
ment since the introduction of the transformer approach in
2017 [28,29]. Transformers enable contextual interactions
for natural language processing tasks and have become
a core technology across diverse domains [30-32]. The
transformer model incorporates an attention mechanism and
has shown remarkable performance in tasks involving the
extraction of temporal and semantic relationships, leading
to success in tasks such as generation and classification
[33]. Generally, transformers enhance predictive performance
through two types of training: pretraining via self-super-
vised learning and fine-tuning via supervised learning. For
example, large language models like GPT and bidirectional
encoder representations from transformers (BERT) were
pretrained on a task predicting the next or masked word
and then fine-tuned on a task generating responses to an
instruction [34]. Several studies in health care have already
used this scheme of 2 types of learning. TransformEHR
improved performance on the fine-tuned task of predicting the
onset of pancreatic cancer and intentional self-harm among
patients with posttraumatic stress disorder by pretraining
on the task of predicting randomly-masked diseases and
outcomes in time series of 6.5 million patients [35]. A deep
neural sequence transduction model for electronic health
records (BEHRT) [36] was pretrained using an electronic
health records (EHR) dataset of 1.6 million patients and
was fine-tuned to predict diagnosis codes. Recent transform-
ers have also made advancements in learning by combining
different modalities of information such as images, audio,
and text. Foresight [37] was trained with structured data such
as laboratory results as well as unstructured data such as
free text from 1.5 million patients across three EHR datasets.
The transformer approach has not previously been applied to
the task of selecting diabetes medications. In addition, while
efforts have been made to train models with large amounts of
data to improve accuracy [38], the impact of the training data
period on predictions is largely unexplored.

Diabetes drug selection involves deciding to prescribe one
or more drugs from among many candidates. This selection
can be handled by ML as a multichoice task. This study
aimed to develop an ML tool that accurately predicts the
next prescribed drugs using the patient’s medical condition
and prescription history over the past year. The objective
is to enhance diabetes treatment outcomes for nonspecialists
through improved support in drug selection (Figure 1). Based
on the performance of previous studies [24-26], our goal
was to achieve an ROC-AUC above 0.95 when predicting
the next prescribed drugs. Drawing on our team’s previous
work in self-management support for T2D treatment [39] and
predicting treatment discontinuations [40,41], we designed
this task with the hope of overcoming barriers to nonspecial-
ist diabetes treatment in clinical practice, believing it could
significantly improve diabetes treatment outcomes.
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Figure 1. System image of prescription drug selection assistant.

Methods
Datasets
All data were collected from the EHRs at the University of
Tokyo Hospital, which included 7034 patients who visited
the hospital, had diagnostic codes, and were registered to
the Japan diabetes comprehensive database project based on
an advanced electronic medical record system (J-DREAMS)
cohort [42]. The data were recorded in the EHRs between
January 1, 2011 and December 31, 2022. The data, including
treatment decisions and outcomes, were reflective of care by
endocrinologists. Variables extracted from the EHRs included
sex, age, 12 kinds of diabetes-related laboratory tests, and
drugs. The laboratory tests included numerical values of
HbA1c, glucose, triacylglycerol, high density lipoprotein
cholesterol, total cholesterol [43], urinary albumin creati-
nine ratio, creatinine [44], alanine transaminase, aspartate
transaminase, and γ-glutamyltransferase [45], and categorical
values of proteins [45] and glycogen. Drugs were identified
using the list of drug price standards [46] provided by the
Ministry of Health, Labour and Welfare of Japan, and 44
types prescribed in 2021 were selected.

Training and Test Data
The records used for training were not used for testing to
ensure that the same patients were not included in both
groups. A total of 80% (5627/7034) of patients were included
in the training group, and the remaining 20% (1407/7034) of
patients were included in the testing group.

In order to examine the size of the training data needed
to achieve the target prediction accuracy, we extracted three
different subsets of training data from the sequences of the
5627 patients in the training group: 2 years from 2020 to 2021
(3013 patients and their 25484 subsequences), 5 years from
2017 to 2021 (4009 patients and their 78,020 subsequences),
and 10 years from 2012 to 2021 (4524 patients and their
168,595 subsequences). For testing, we further identified a
subset of the testing data that was solely data from 2022
(637 patients and their 2988 subsequences). Thus, there was
no overlap in patients or time periods between training and
testing. Table 1 shows the characteristics of the patients.
The drugs in the table are the top 5 and bottom 5 in terms
of number of prescriptions in the 2-year training data. All
characteristics are provided in Multimedia Appendix 1.

Table 1. Characteristics of patients with diabetes included in the training and testing datasets. Characteristics are presented separately for the patient
groups belonging to the different training datasets defined by period: 2 years (2020-2021), 5 years (2017-2021), 10 years (2012-2021) and the
independent test dataset (data exclusively from 2022).

2 years of training data 5 years of training data 10 years of training data 1 year of test data
Records
(n=25484)

Patient
(n=3013)

Records
(n=78020)

Patient
(n=4009)

Records
(n=168595)

Patient
(n=4524)

Records
(n=2988)

Patient
(n=637)

Sex
  Male, n (%) 16224 (63.66) 1915 (63.56) 49348 (63.25) 2543 (63.43) 106782 (63.34) 2869 (63.42) 1793 (60.01) 381 (59.81)
  Female, n (%) 9260 (36.34) 1098 (36.44) 28672 (36.75) 1466 (36.57) 61813 (36.66) 1655 (36.58) 1195 (39.99) 256 (40.19)
  Age, mean (SD) 67.62 (12.59) 69.06

(12.50)
67.25 (12.56) 69.17

(12.87)
66.41 (12.30) 68.98

(13.10)
68.80
(12.31)

69.68 (12.26)

HbA1ca

  Mean (SD) 7.37 (1.08) —b 7.31 (1.06) — 7.25 (1.03) — 7.31 (1.02) —
  <6, n (%) 920 (3.61) 323 (10.72) 3046 (3.90) 754 (18.81) 7286 (4.32) 1345 (29.73) 96 (3.21) 49 (7.69)
  6‐7, n (%) 8874 (34.82) 1865 (61.90) 29030 (37.21) 3027 (75.51) 66470 (39.43) 3835 (84.77) 1113 (37.25) 370 (58.08)
  7‐8, n (%) 10177 (39.93) 2135 (70.86) 30493 (39.08) 3157 (78.75) 64355 (38.17) 3830 (84.66) 1189 (39.79) 404 (63.42)
  ≥8, n (%) 5513 (21.63) 1224 (40.62) 15451 (19.80) 2008 (50.09) 30484 (18.08) 2725 (60.23) 590 (19.75) 200 (31.40)
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2 years of training data 5 years of training data 10 years of training data 1 year of test data
Records
(n=25484)

Patient
(n=3013)

Records
(n=78020)

Patient
(n=4009)

Records
(n=168595)

Patient
(n=4524)

Records
(n=2988)

Patient
(n=637)

  missing, n (%) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
HDL-Cc

  Mean (SD) 60.99 (18.23) — 60.07 (17.94) — 59.81 (17.80) — 63.76
(19.79)

—

  <40, n (%) 1943 (7.62) 512 (16.99) 6633 (8.50) 964 (24.05) 14694 (8.72) 1374 (30.37) 158 (5.29) 67 (10.52)
  40‐120, n (%) 21304 (83.60) 2737 (90.84) 63249 (81.07) 3644 (90.90) 134924 (80.03) 4195 (92.73) 2564 (85.81) 577 (90.58)
  ≥120, n (%) 195 (0.77) 59 (1.96) 494 (0.63) 100 (2.49) 966 (0.57) 137 (3.03) 44 (1.47) 11 (1.73)
  missing, n (%) 2042 (8.01) 178 (5.91) 7644 (9.80) 243 (6.06) 18011 (10.68) 219 (4.84) 222 (7.43) 40 (6.28)
Cred

  Mean (SD) 0.97 (0.69) — 0.96 (0.75) — 0.95 (0.72) — 1.04 (1.08) —
Male
  Mean (SD) 1.08 (0.71) — 1.07 (0.74) — 1.05 (0.74) — 1.18 (1.23) —
  <0.65, n (%) 758 (2.97) 191 (6.34) 2675 (3.43) 405 (10.10) 5783 (3.43) 566 (12.51) 111 (3.71) 37 (5.81)
  0.65‐1.09, n (%) 10672 (41.88) 1482 (49.19) 32766 (42.00) 2057 (51.31) 71870 (42.63) 2456 (54.29) 1145 (38.32) 290 (45.53)
  ≥1.09, n (%) 4543 (17.83) 750 (24.89) 13140 (16.84) 1093 (27.26) 27001 (16.02) 1337 (29.55) 516 (17.27) 129 (20.25)
  missing, n (%) 251 (0.98) 6 (0.20) 767 (0.98) 5 (0.12) 2128 (1.26) 7 (0.15) 21 (0.70) 1 (0.16)
Female
  Mean (SD) 0.78 (0.60) — 0.78 (0.72) — 0.77 (0.65) — 0.82 (0.74) —
  <0.46, n (%) 357 (1.40) 89 (2.95) 1160 (1.49) 175 (4.37) 2616 (1.55) 282 (6.23) 28 (0.94) 11 (1.73)
  0.46‐0.82, n (%) 6596 (25.88) 895 (29.70) 20561 (26.35) 1224 (30.53) 44130 (26.18) 1428 (31.56) 825 (27.61) 194 (30.46)
  ≥0.82, n (%) 2133 (8.37) 372 (12.35) 6370 (8.16) 596 (14.87) 13572 (8.05) 730 (16.14) 326 (10.91) 93 (14.60)
  missing, n (%) 174 (0.68) 11 (0.37) 581 (0.74) 11 (0.27) 1495 (0.89) 16 (0.35) 16 (0.54) 2 (0.31)
Glue

  Mean (SD) 147.68
(51.19)

— 147.00
(51.31)

— 144.12 (50.77) — 145.47
(48.67)

—

  <70, n (%) 302 (1.19) 169 (5.61) 979 (1.25) 403 (10.05) 2709 (1.61) 743 (16.42) 28 (0.94) 22 (3.45)
  70‐110, n (%) 4230 (16.60) 1389 (46.10) 13604 (17.44) 2483 (61.94) 33633 (19.95) 3403 (75.22) 555 (18.57) 260 (40.82)
  ≥110, n (%) 20863 (81.87) 2924 (97.05) 63201 (81.01) 3907 (97.46) 131586 (78.05) 4418 (97.66) 2394 (80.12) 609 (95.60)
  missing, n (%) 89 (0.35) 7 (0.23) 236 (0.30) 5 (0.12) 667 (0.40) 6 (0.13) 11 (0.37) 2 (0.31)
Prescribed drug (top 5)
  Metformin

hydrochloride, n
(%)

11257 (44.17) 1390 (46.13) 33442 (42.86) 1952 (48.69) 72337 (42.91) 2376 (52.52) 1361 (45.55) 297 (46.62)

  Sitagliptin
phosphate
hydrate, n (%)

4963 (19.47) 693 (23.00) 15420 (19.76) 1148 (28.64) 37438 (22.21) 1808 (39.96) 425 (14.22) 101 (15.86)

  Insulin aspart
(genetical
recombination), n
(%)

3212 (12.60) 377 (12.51) 10039 (12.87) 603 (15.04) 20149 (11.95) 833 (18.41) 403 (13.49) 85 (13.34)

  Glimepiride, n
(%)

2885 (11.32) 398 (13.21) 10387 (13.31) 690 (17.21) 28855 (17.11) 1141 (25.22) 358 (11.98) 76 (11.93)

  Pioglitazone
hydrochloride, n
(%)

2731 (10.72) 354 (11.75) 9450 (12.11) 592 (14.77) 24305 (14.42) 910 (20.11) 244 (8.17) 53 (8.32)

Prescribed drug (buttom 5)
  Saxagliptin

hydrate, n (%)
158 (0.62) 17 (0.56) 586 (0.75) 41 (1.02) 960 (0.57) 52 (1.15) 30 (1.00) 6 (0.94)

  Anagliptin, n (%) 142 (0.56) 17 (0.56) 528 (0.68) 34 (0.85) 986 (0.58) 51 (1.13) 5 (0.17) 1 (0.16)
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2 years of training data 5 years of training data 10 years of training data 1 year of test data
Records
(n=25484)

Patient
(n=3013)

Records
(n=78020)

Patient
(n=4009)

Records
(n=168595)

Patient
(n=4524)

Records
(n=2988)

Patient
(n=637)

  Insulin lispro
(genetical
recombination)
[Insulin lispro
Biosimilar 1], n
(%)

59 (0.23) 19 (0.63) 59 (0.08) 19 (0.47) 59 (0.03) 19 (0.42) 58 (1.94) 13 (2.04)

  Insulin glargine
(genetical
recombination)
[Insulin glargin
biosimilar 2], n
(%)

39 (0.15) 9 (0.30) 86 (0.11) 14 (0.35) 86 (0.05) 14 (0.31) 1 (0.03) 1 (0.16)

  Glibenclamide, n
(%)

33 (0.13) 5 (0.17) 280 (0.36) 24 (0.60) 1722 (1.02) 87 (1.92) 11 (0.37) 3 (0.47)

aHbA1c: hemoglobin A1c.
bnot applicable.
cHDL-C: high density lipoprotein cholesterol.
dCre: creatinine..
eGlu: glucose.

ML Models
Patients’ medical conditions and prescription histories are in
general irregularly spaced, reflecting variability in patient
care appointment dates, with updates to outpatient EHR
occurring before and after clinical visits. We organized the
data into Monday-to-Sunday weeks and quantized the data
to a single value per week, using the average in the case
of multiple measurements and treating weeks with no values
as having missing values [47]. This approach allowed the
ML model to treat irregularly spaced data spanning Y (a
natural number) years as regularly spaced data consisting of
(Y×365)⁄7 (rounded up to the nearest integer) values, that
is we treated all data as weekly data. We did not perform
preprocessing, including interpolation, on missing values in

the regularly spaced data. No normalization, outlier removal,
or dimensionality reduction was performed.

We designed a transformer-based encoder-decoder model
(Figure 2) that takes as input a time series of drugs prescri-
bed and laboratory tests over the past 1 year, sex, and age.
The model approaches drug selection as a multichoice task.
With N types of drugs, there are 2^N potential prescription
combinations. By setting the number of units in the output
layer of the transformer decoder to N, we implemented N
binary classifications. The model outputs a set of scores
representing the probability of each drug being prescribed
on that day and, for each drug and day, a binary prescrip-
tion decision based on whether the prescription probability is
greater than or equal to 0.5.

Figure 2. Architecture of the transformer-based encoder-decoder model for predicting the next-prescribed diabetes medications. EHRs: electronic
health records.

We treated age and HbA1c values as numerical data, sex
as a categorical label, and prescription history as a set of
categorical labels. In addition, a time series representing the
presence or absence of missing data, called an attention mask,

was simultaneously generated. Each data type was trans-
formed into a uniform-dimensional vector using an embed-
ding layer specific to that data type, which was then handled
by the transformer model. Time information was converted to
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a uniform-dimensional vector using a positional embedding
layer with a periodic function and added to the output value
of the embedding layers.

The model incorporates two types of attention layers:
self-attention in the encoder, designed to extract relationships
in time and meaning from the time series of drugs prescri-
bed and laboratory tests, and cross-attention in the decoder,
used to predict the next prescribed drugs based on these
relationships. Times in the time series that contain missing
data are ignored in the self-attention and mutual attention
calculation process using the attention mask. This makes
it easy to handle without additional processing for missing
data completion. The self-attention weights were optimized
through self-supervised learning. This involves the task of
predicting both the next laboratory test values and drugs
prescribed using a time series of past laboratory tests and
drugs prescribed. The cross-attention weights were optimized
through supervised learning involving the task of predicting a
set of scores representing the probability of each drug being
prescribed on that day.

The model consisted of four transformer-encoder layers
including four multihead self-attention blocks and four
transformer-decoder layers including four multihead cross-
attention blocks, along with a hidden layer of dimension 256.
Compared to the text data handled by the language model,
the prescription drug selection data has a smaller vocabulary
(number of drug types) and a shorter time series, so these
hyperparameters were set to about one-third the size of the
BERT model [34]. The parameters were optimized by Adam
with a learning rate of 1e-4, a batch size of 256, and 100
epochs. The loss functions for numerical and categorical data
were mean squared error and focal loss [48], respectively.
All implementations were written in Python 3.11 (Python
Software Foundation) and PyTorch 2.2 (Meta AI).

The model was trained using prescription records from
endocrinologists at the University of Tokyo Hospital. As a
result, the model generates outputs aligned with the treatment
approaches of these specialists.
Statistical Methods
We analyzed the characteristics of patients in the dataset
using means, SD, and frequency counts. We calculated
95% CI using the bootstrap method where applicable. We
performed all statistical analyses using custom Python code.

We compared our model with an established ML method
recognized for high accuracy. There were validations on
similar T2D prediction tasks favored LightGBM [49,50],
making it our chosen reference for comparisons. We
compared the predictive accuracy of the two methods with the
three different training dataset for the prescription prediction

of 44 drugs using both macro- and microaverages [51] of
the receiver operating characteristic area under the curve
(ROC-AUC) as metrics. The macroaverage is a measure of
the average performance across all classes independently.
The method computes the metrics of ROC-AUC for each
individual drug, then averages them to obtain an overall
score. This analysis method gives equal weight to each drug,
regardless of its size or imbalance in the dataset. On the
other hand, the microaverage is a measure of the aggregate
performance that weights all instances in the dataset equally.
This analysis method first aggregates the true positives, false
positives, true negatives, and false negatives across all drugs,
and then computes each metric using these aggregated values.
The microaverage treats every prediction equally, without
considering the kinds of drugs.

The predictive performance of each drug was also
evaluated using ROC-AUC.

Ethical Considerations
This study was approved by the institutional review board
of the University of Tokyo School of Medicine (appro-
val number: 10705-(4)) and was conducted in accordance
with the Declaration of Helsinki. This was a retrospective,
noninterventional database study without patient involvement.
Confidentiality was safeguarded by the University of Tokyo
Hospital. According to the Guidelines for Epidemiological
Studies of the Ministry of Health, Labour and Welfare of
Japan, written informed consent was not required. Informa-
tion about the current study was available to patients on a
website, and patients have the right to cease registration of
their data at any time [52].

Results
Prediction Performance for Various Sizes
of Training Data
We assessed different sizes of training data (Table 2). The
best prediction performance was obtained from training
with the 5 years of data from 2017 to 2021. This version
achieved a microaverage (95% CI) ROC-AUC of 0.993
(0.992-0.994) and a macroaverage (95% CI) ROC-AUC
of 0.988 (0.980-0.993), and we selected it as our model.
Performance was similar when trained using the full range
of 10 years of data, from 2012 to 2021, producing some-
what worse results. For all sizes of training data, we met
the study’s objectives of achieving an ROC-AUC above
0.95 from our macro- and microaverage evaluations. The
prediction accuracy of LightGBM with the 5 years of data
had a microaverage ROC AUC of 0.988 (0.985-0.990), and
the transformer outperformed LightGBM.
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Table 2. Overall prediction performance of models for the next-prescribed diabetes drugs, stratified by the training data period. This table compares
the overall accuracy of the developed transformer model against a LightGBM model.

Transformer LightGBM
Microaverage (95% CI) Macroaverage (95% CI) Microaverage (95% CI) Macroaverage (95% CI)

2 years of training data 0.991 (0.990-0.992) 0.981 (0.975-0.988) 0.987 (0.984-0.989) 0.970 (0.941-0.992)
5 years of training data 0.993 (0.992-0.994) 0.988 (0.980-0.993) 0.988 (0.985-0.990) 0.962 (0.916-0.993)
10 years of training data 0.992 (0.990-0.993) 0.987 (0.976-0.994) 0.984 (0.981-0.986) 0.959 (0.921-0.987)

Prediction Performance for Each Drug
We examined the prediction performance for each of the
44 drugs (Table 3). The drugs in the table are the top 5
and bottom 5 in terms of the number of prescriptions in

the 2 years of training data. All results are provided in the
supplemental file (Multimedia Appendix 2). We achieved an
ROC-AUC above our target of 0.95 for 43 of the 44 drugs
when trained with the 5 years of data.

Table 3. Prediction performance for drugs when trained with various sizes of training data. The table shows results for the top 5 and bottom 5 most
frequently prescribed drugs, showing a comparison of performance between specific drugs and the impact of the data period of the training data on
the prediction accuracy of individual drugs.

Number of
prescriptions in 1
year of test data,
n (%)

Number of prescriptions in 2
years of training data

Number of prescriptions in 5
years of training data

Number of prescriptions in 10
years of training data

ROC-AUC
(95% CI)

Accuracy
(95% CI)

ROC-AUC
(95% CI)

Accuracy
(95% CI)

ROC-AUC
(95% CI)

Accuracy
(95% CI)

Prescribed drug (top 5)
Metformin hydrochloride,
n (%)

1361 (45.55) 0.992
(0.989-0.995)

0.977
(0.971-0.982)

0.992
(0.989-0.995)

0.982
(0.978-0.987)

0.993
(0.990-0.996)

0.980
(0.975-0.985)

Sitagliptin phosphate
hydrate, n (%)

425 (14.22) 0.991
(0.985-0.996)

0.988
(0.985-0.992)

0.994
(0.990-0.997)

0.990
(0.987-0.994)

0.996
(0.994-0.998)

0.992
(0.989-0.995)

Insulin aspart (genetical
recombination), n (%)

403 (13.49) 0.993
(0.989-0.997)

0.985
(0.981-0.989)

0.996
(0.993-0.998)

0.985
(0.981-0.989)

0.995
(0.991-0.999)

0.993
(0.990-0.996)

Glimepiride, n (%) 358 (11.98) 0.988
(0.979-0.995)

0.991
(0.988-0.994)

0.991
(0.984-0.996)

0.994
(0.991-0.996)

0.995
(0.990-0.999)

0.992
(0.989-0.995)

Pioglitazone
hydrochloride, n (%)

244 (8.17) 0.989
(0.978-0.998)

0.993
(0.990-0.996)

0.990
(0.979-0.999)

0.993
(0.990-0.996)

0.995
(0.992-0.997)

0.985
(0.981-0.989)

Prescribed drug (buttom 5)
Saxagliptin hydrate, n
(%)

30 (1.00) 0.978
(0.944-1.000)

0.998
(0.996-0.999)

0.999
(0.999-1.000)

0.999
(0.998-1.000)

0.999
(0.999-1.000)

0.999
(0.998-1.000)

Anagliptin, n (%) 5 (0.17) 0.999
(0.998-1.000)

0.998
(0.996-0.999)

0.999
(0.999-1.000)

0.999
(0.998-1.000)

0.999
(0.998-1.000)

1.000
(0.999-1.000)

Insulin lispro (genetical
recombination) [Insulin
lispro Biosimilar 1], n
(%)

58 (1.94) 0.945
(0.910-0.972)

0.986
(0.981-0.990)

0.848
(0.784-0.904)

0.981
(0.976-0.986)

0.799
(0.735-0.860)

0.981
(0.975-0.986)

Insulin glargine
(genetical recombination)
[Insulin glargin
biosimilar 2], n (%)

1 (0.03) 0.938
(0.500-0.945)

0.996
(0.994-0.998)

0.990
(0.500-0.993)

0.999
(0.998-1.000)

0.938
(0.500-0.945)

1.000
(0.999-1.000)

Glibenclamide, n (%) 11 (0.37) 0.999
(0.999-1.000)

0.999
(0.997-1.000)

0.999
(0.999-1.000)

0.999
(0.997-1.000)

0.973
(0.935-0.999)

0.996
(0.994-0.998)

The only drug that did not achieve the target value was
“Insulin lispro (genetical recombination) [Insulin lispro
Biosimilar 1].” The prescription of this drug began in 2020.
Therefore, the same instances of prescription were present in
all three training data periods. For this drug, the model trained
on just 2 years of data had the highest ROC-AUC.

Interpretability
The proposed model performed as well as other transformer-
based models considering the ability for extracting relation-
ships in time and meaning [53]. The embedding vectors
obtained through training represent the closeness of relation-
ships between vectors as proximity. The embedding vectors
in this experiment were the same 256 dimensions as the
transformer hidden size. Projecting onto two dimensions
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using uniform manifold approximation and projection [54]
allows visualization (Figure 3). While we did not observe
a strong tendency for clustering, several biosimilar drugs,

such as insulin glargine (genetical recombination, ie, insulin
glargin biosimilar 1), were positioned close to the biosimilar
drug.

Figure 3. Visualization of learned drug embedding vectors using uniform manifold approximation and projection. This plot displays a 2D representa-
tion of the relationships between 44 different diabetes drugs, as learned by the transformer model’s encoder component. Each point corresponds to a
specific diabetes drug. Proximity between points suggests that the model identified similarities in how these drugs were used or in the patient contexts
associated with their prescription within the training dataset.

Discussion
Evaluation of the Predictive Accuracy
The proposed model achieved impressive predictive accuracy,
with macroaverages (95% CI) of ROC-AUC of 0.988
(0.980-0.993). In previous studies [11,12], the ROC-AUC
for drugs was less than 0.95, and our model represents a
significant improvement relative to this previous work.

The prediction accuracy was higher when trained with
short-term data from 5 years than when trained using data
from the past 10 years. We suspect that changes in the
treatment environment, such as the introduction of new
prescription drugs, are responsible for this difference in
prediction accuracy. When training on data from the past N
years, the model uniformly learns the prescription selection
trends for the past N years. Therefore, when N is large, the
model is heavily influenced by the trends of older prescription
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selections. This suspicion is supported by our results that the
prescription drug that did not reach target accuracy, “Insu-
lin lispro (genetical recombination) [Insulin lispro Biosimilar
1],” was only recently approved and prescribed. Introduced in
2020, this drug has remained relatively rare in the dataset, as
demonstrated in Table 1. Even when expanding the training
data period from 2 to 10 years, the number of prescriptions
for this drug has remained stagnant at 59, and its proportion
within the overall dataset has decreased from 0.23% to a mere
0.03%. This low frequency and temporal bias in the data have
rendered learning this specific drug’s patterns challenging.
Although ML models generally perform better with more
data, for this application it may be better to gather data from
more hospitals rather than a longer time span, since it is
desirable to learn more fresh data, including new prescription
drugs. Transformer models, known for power-law character-
istics, benefit from scale-ups [38], and expanding the study
to multiple hospitals could explore potential performance
enhancements and test the applicability of the power-law in
the medical field.

Physicians select drugs considering insulin secretion and
insulin resistance, age, obesity, severity of chronic compli-
cations, and liver and kidney function. In this experiment,
we used age, sex, 12 kinds of diabetes-related laboratory
tests, and past prescription history. By adding comprehensive
items likely used in medication selection to the model input,
performance may be improved.

Our ultimate goal is to improve the treatment outcomes
of diabetes. Merely predicting drug selection alone cannot
achieve this goal. Expanding the scope to predict the impact
of prescribed drugs could further enhance the model’s utility
in diabetes treatment.
Limitations
Our study has notable limitations. First, the model uses only
age, sex, 12 kinds of diabetes-related laboratory tests, and
past prescription history as inputs. It is desirable to fully
account for the various constraints and contraindications
that physicians consider in real-world clinical practice. For
example, when considering patient characteristics, factors
such as age (older adults or pediatric), pregnancy, lactation,
BMI, type of diabetes, c-peptide, renal and hepatic func-
tion, comorbidities, allergies, urinary tract infection history,
diabetic ketoacidosis history, cardiac history, and hypogly-
cemia must be considered. Regarding medications, consid-
erations include adverse effects, drug resistance, and cost.
However, despite these limitations, this study demonstrates
that it is possible to narrow down treatment options to some
extent using a limited set of variables. We believe that this
result holds promise for providing primary care physicians
with some guidance and direction. Regarding warnings of
constraints and contraindications in drug selection, CDSS
have traditionally excelled in this [20,21] and can effectively
complement this model. In addition, recent advancements
in natural language processing within ML models [33,34]
have enabled the extraction of important information on
constraints and contraindications from fresh sources such
as research papers published daily. We believe there is

substantial potential for future research to integrate these
important factors into ML models, and we intend to work
on this improvement.

Second, the data were sourced from a single hospital,
limiting generalizability. Potential biases in the results include
the race and geography of the patients and the prescrib-
ing tendencies of a limited number of endocrinologists at
the hospital. ML models tend to learn biases present in
the training data, resulting in predictions that reflect those
biases. Prediction accuracy is significantly degraded when
different biases exist between the training data and the test
data. Therefore, in order to generalize the prediction results
of the model, a large dataset of data from multiple hospi-
tals containing data on patients with diverse backgrounds is
required. However, in reality, it is difficult to build an ideal
dataset due to constraints such as privacy protection and data
collection costs. As one solution, we believe that it is good
to collect training data that resembles the patterns of patients
treated by the primary care physicians who are the users of
the model, thereby eliminating biase differences between the
training data and the test data as much as possible. Specifi-
cally, we collect EHRs of patients who have been involved
in prescriptions by endocrinologists at multiple hospitals
in a specific region, and use this to build the model that
selects prescription drugs for patients treated by primary care
physicians in the same region. We believe that this approach
will reduce the bias differences in regional characteristics
between the training data and the test data, and improve
generalization performance with realistic data collection. We
would like to verify the validity of this solution in the future.

Third, ML reflects majority characteristics, potentially
limiting applicability to diverse patient populations. In
the dataset used in the experiment, over 40% (297/637)
of patients were prescribed metformin hydrochloride, and
patient characteristics are biased. There is a risk that truly
effective treatments may not be prescribed correctly to a
minority of patients. Prediction failure analysis needs to
be further scrutinized, including versus patient characteris-
tics. We should examine this issue by comparing prediction
accuracy for each patient cluster.

Fourth, this was a backward-looking study, using past
data, and the essential next phase is to assess the model’s
predictive capabilities in clinical practice. There is a need
for a careful exploration of the model’s effectiveness in real
clinical scenarios.

Fifth, while the proposed model requires hyperparame-
ters, we determined these values based on previous studies.
Although fine-tuning hyperparameters is generally desirable,
transformer models are typically computationally expensive
to train, and many previous studies have likewise not fully
tuned their parameters. There is potential for performance
improvement through hyperparameter tuning, and we intend
to investigate this further in future work.

Sixth, the model has poor interpretability. We investigated
the proximity relationship between embedding vectors, but no
strong tendency was found. It would be better to use other

JMIR MEDICAL INFORMATICS Kurasawa et al

https://medinform.jmir.org/2025/1/e67748 JMIR Med Inform 2025 | vol. 13 | e67748 | p. 9
(page number not for citation purposes)

https://medinform.jmir.org/2025/1/e67748


information obtained from the transformer, such as attention
weights, to further improve interpretability.

These limitations raise important ethical considerations
in the development and application of medical artificial
intelligence. Physicians who use the model must be aware of
these limitations and exercise appropriate clinical judgment.
Obtaining appropriate informed consent from patients is
important.
Conclusions
The proposed model addresses the challenge of predicting
the next prescribed drugs. This model, trained using past

prescriptions of endocrinologists, has the potential to improve
treatment outcomes for nonspecialists by assisting them in
making prescription decisions. Future efforts should focus on
improving accuracy by incorporating disease state informa-
tion beyond current inputs and validating the model on large
clinical datasets across multiple hospitals.
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